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THESIS ABSTRACT

Walton G. O’Connor

Master of Science

Department of Computer Science

March 2023

Title: On the Multi-Fractal Nature of Observed IP Addresses in Measured Internet
Traffic

We examine the presence of multifractal properties in the spatial structure

of observed IPv4 addresses in measured Internet traffic. A collection of traffic

samples from a variety of network settings are assembled and their spatial

structures evaluated for multifractal properties using the method of moments

approach. We show that all collected traces have properties consistent with

multifractal scaling, but that the scaling behaviors vary by trace. We propose

mechanisms which may give rise to these behaviors, and then discuss a number

of ways by which our empirical finding concerning the spatial structure of observed

IP addresses in measured network traffic can be utilized in practice, including its

use in modern dataplane network monitor settings, both as a metric to monitor and

as a means to increase hardware utilization efficiency.
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CHAPTER I

INTRODUCTION

Current work in network automation promises that the ultimate goal of a

self-driving network is contingent on the ability to concurrently execute hundreds

or thousands of network telemetry queries that collect key information about the

network state in a timely manner. Collected information serves as the primary

input in to a bevy of network management systems designed to detect, characterize,

and counteract all manner of network related problems, in both the security and

performance domains, at scale, and near real-time. This trend is made possible

by strides in hybrid network telemetry architectures that back line rate hardware

telemetry collection (implemented in NICs or programmable switches) with flexible

and scaleable userspace stream processors.

A key limitation of dataplane telemetry hardware is that resources (namely

memory, which is typically implemented as expensive SRAM in hardware), are

very limited and hotly contested, and hardware runtime reconfigurability and

runtime programmability are underwhelming at best compared to the possibilities

in software. Consequently, running queries in the dataplane at scale and in real

time poses a persistent challenge, especially given the dataplane’s preexisting

duties as the backbone of the network. Prior efforts on scaling network telemetry

queries have focused mainly on attempting to stretch a limited set of dataplane

capacity and capabilities as far as possible to answer a set of telemetry queries to a

satisfactory precision while ensuring that packets continue to get forwarded at line

rate. We propose an alternative approach to scaling dataplane telemetry queries

where, rather than trying to fit more queries on to the same hardware, we instead
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opt to take advantage of pronounced spatial structures present in the network

traffic to reduce the workload required to satisfy the queries being submitted.

1.1 Traffic of Interest: Definition and Examples

The observation that the traffic required to answer a telemetry query

forms a fraction of the overall traffic is mostly intuitive, with telemetry operators

often drawing comparisons between telemetry queries and “finding needles in a

haystack”. To put concrete numbers to this observation, in the case of one real

world intrusion detection system (IDS), 99% of the traffic processed by the IDS was

found to be benign, and 1% or less triggered an alert or was flagged by the IDS.

For a given query or set of queries, we define the associated “traffic of interest”

(ToI) to be a subset of the overall packet traffic that satisfies those queries’ desire

for data (i.e. it is the minimum set of packets required for the query to arrive

at the same result that it would have given using the full set of packets). In the

context of the IDS example, the ToI would be the set of traffic that the IDS

identifies as malicious.

1.1.1 Examples of Traffic of Interest. The size and content of the

ToI is highly dependent on the nature of the query it satisfies. On one end of the

spectrum, consider the ToI for something specialized like a DNS reflection attack

detecting query. The query is really only interested in certain DNS packets, so its

ToI would be a subset of all DNS packets. The number of DNS packets is pretty

minuscule compared to the overall volume of packets, so in this case the ToI is

indeed a needle and the haystack of non-DNS packets can be ignored. On the other

end of the spectrum, there are a number of very nonspecific queries that would like

to view huge portions of the traffic on a network: the simplest one of these would

just be the null query, which returns every packet observed at the collection point.
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More realistic examples include queries examining all outbound or inbound packets,

queries examining all TCP traffic and so on. In these instances, the desired packets

comprise such a large portion of the overall traffic that the proverbial needle is

now effectively the haystack itself. For a final example of ToI, consider a query

examining internet background radiation (i.e. packets destined for an inactive

address assigned to an active network). As this query only needs to examine data

headed towards IPs with no machine behind them, the query could, for instance,

ignore any TCP connections that successfully completed the handshake. Detecting

this is nontrivial, but it illustrates the flexibility inherent to our definition of ToI.

1.2 Utility of ToIs to Telemetry

As most packets encountered by the dataplane are simply irrelevant to

the queries they are running, focusing the hardware on the ToI saves precious

dataplane resources. For example, the available state space for modern dataplane

telemetry systems constrains the volume of flows or connections they can track,

but filtering mechanisms taking advantage of multifractal clustering properties can

substantially ease this constraint for certain classes of query. Finding the true set of

ToI itself can often only be done once the results of a telemetry query are already

known, but the notion of ToI as an ideal query input to strive for remains, and

there are a variety of heuristics that can be used to carve subsets out of the traffic

data that contain ToI, where the goal of these heuristics is to maximize the portion

of traffic being fed into a query that is ToI. One such approach for filtering ToI

from background traffic is to try and identify addresses that are generating ToI

and exclusively examining their traffic. This approach can reduce the volume of

traffic that needs to be examined by the dataplane substantially when the number

of ToI-generating addresses is a small fraction of the overall traffic (like in the IDS
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case presented above), and importantly, filtering by address or subnet is a nearly

ubiquitous capability among hardware telemetry systems.

1.2.1 Background on Switch Based Telemetry Systems. Many

existing network telemetry systems have converged on expression their queries as a

sequence of dataflow operators (e.g., map, filter, reduce, distinct) applied over

an incoming windowed stream of packets with some fixed window duration. Sonata

[10] provides a set of queries that have become a sort of baseline to benchmark

dataplane telemetry systems. A fairly typical example of such a query can be seen

in Sonata’s implementation of the superspreader query: Hosts, identified by their

sourceIP that send traffic to more than Th distinct destinations in a window of

size W seconds are flagged as superspreaders. Executing such a query requires

making three decisions: (1) which operator to execute during which period in time,

(2) which subset of the traffic (identified by some key, such as sourceIP) to process

and for which operators, and (3) how much memory to allocate to each operator

for the window. In this scenario, imagine a piece of hardware that concurrently

runs dataflow operators over sets of packets belonging to different segments of the

IP space, and each operator required some amount of memory be allocated to it.

The naive approach would be to give the operator running on each segment of the

IP space an equal share of memory. This approach works if ToI generating IPs are

distributed evenly between every prefix, but on the other hand the system breaks

down once any individual prefix outgrows its allocated memory, even if the overall

volume of data could easily fit in the memory. A more intelligent system would

be aware that the prefixes containing ToI-generating IPs are often not distributed

evenly, and would instead have some mechanism to track which prefixes generated

ToI for each past query and allocate memory to operators accordingly.
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1.2.2 The Case for Leveraging Address Distributions for the

Dataplane. Preliminary empirical evidence points towards source IPs not being

distributed uniformly across the IP space [11][4]. [11] consider traffic consisting

of uni-directional traffic extracted from bidirectional traffic seen on different

links or at different routers within different networks, and [4] examined traffic

consisting of internet background radiation traffic collected from an access link

to a university or provider network containing unused addresses within its allocated

IPs. The work by Kohler et al.[11] was the first to examine the spatial structure of

observed IP addresses in measured internet traffic. Analysis of hours of measured

packet traces from different network locations indicated that each trace showed

signs of multifractal scaling behavior in the distribution of source IP addresses.

Monofractal scaling defines a scale invariant behavior wherein clusters at a given

scale level (like /16) get divided into proportionally sized subclusters at finer

scales (like /20), irrespective of where the clusters are situated in the IPv4 space.

Multifractal scaling is a generalization of this wherein the scaling behavior can

vary for different parts of the IPv4 space, and the parameters dictating this “local”

scaling behavior are summarized by a function called the multifractal spectrum.

Both give rise to a pronounced qualitative “cluster-within-cluster” structure that

results in observed IP addresses being distributed very unevenly across the IPv4

space. Subsequently, Barford et al.[4] analyzed multi-day long datasets that consist

of source IP addresses in packet traces collected by network telescopes, firewalls

and IDSs distributed throughout the internet and reported characteristics of the

observed IP address spaces that are consistent with multifractal scaling. The IP

space clustering behavior of multifractal traffic may be of substantial benefit to ToI

finding heuristics that filter over the IP space.
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CHAPTER II

CONTRIBUTION

The studies discussed were first reported two decades ago, and there

has been little progress made to establish a rigorous foundational basis for the

empirical finding that the structure of observed IP addresses in measured internet

traffic demonstrates multifractal scaling. Compared to the commonly-accepted

and well-established empirical finding that the temporal structure of measured

internet traffic demonstrates self-similar scaling, the reported multifractal findings

have received little attention, are neither widely accepted or known, and lack a

generally accepted or carefully validated explanation. This issue is summed up by

Kohler et al.[11]: “Without a convincing description of how [multifractal] address

structure arises, the results of the explorations [in this paper] must be considered

preliminary.”. We argue there are additional reasons these early empirical reports

have resulted in little to no follow-up work and the suggested multifractal behavior

has been largely viewed as a curiosity.

First, these findings are somewhat dated, to put it gently. There is

a pressing need to use modern traffic and perform a rigorous analysis for a

range of current datasets from a range of environments. Second, many existing

approaches to multifractal analysis are subject to technical assumptions that

are difficult to prove in practice, and coping with this requires exploiting the

large numbers of observations that come with typical network measurement by

applying statistical techniques to carry out a robust assessment of the macroscopic

aspects of multifractal scaling behavior, even if these techniques are inadequate to

examine finer grained details. Third, any convincing physical description of how

the multifractal structure emerges should be backed by supporting measurements
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that illustrate the validity of the mechanisms that underly the provided physical

explanation. Ideally, such a description should translate directly into parametric

generative models that can be used to obtain synthetic traffic that emulates

the observed multifractal structure of the IP addresses in the measured traces.

Fourth, we are currently lacking concrete use cases that demonstrate whether or

not accounting for the observed spatial characteristics of real-world instances of

traffic is important for downstream applications, and if so, for what type of such

downstream applications. Lastly, in case the multifractal address structure in

measured instances of traffic is shown to matter in practice, we need new ways to

synthesize instances of traffic that can be shown to exhibit the full-fledged spatial-

temporal characteristics that are consistent with real-world traffic and includes

both the temporal and spatial aspects of measured internet traffic.

We focus on addressing the first two items, present preliminary results for

items three and four, and briefly discuss possibilities for approaching item four. In

particular we make the following contributions:

– We amass a repository of different instances of traffic datasets derived from

a range of different measured internet traffic traces. The current instances

differ in terms of the location where the traffic was collected, traffic volume,

duration, user base, application mix, etc. We are constantly adding new

instances of traffic as they become available to us. (§ III)

– To infer the presence or absence of multifractal address structure in each

of the existing real-world instances of traffic, we apply a statistical method

known as “method of moments”. Compared to other, more geometrical

methods for inferring multifractal structure, the method of moments is known

to be more robust with respect to aspects of the data that may violate certain

7



technical conditions other methods require but are in general difficult if

not impossible to verify in practice, computationally more tractable than

other methods, and especially well-suited for datasets with large number

of observations. We show that each of the traffic samples exhibits a spatial

address structure that is consistent with multifractal scaling but the degree of

multifractality depends on the type of datasets. (§ IV, § V)

– Building on an earlier attempt at providing a physical explanation or

description of how multifractal address structure may arise in real-world

traffic, we offer some initial empirical evidence in favor of a generative

mechanism in the form of an underlying multiplicative conservative cascade

process and demonstrate its potential for producing synthetic traffic with a

desired multifractal address structure. (§ VI)

– Prior studies that report on empirical findings of multifractal address

structure in measured internet traffic provide or discuss no concrete use cases

that demonstrate the importance of adequately accounting for this newly

observed characteristic. We review the few studies in the existing literature

that report on such concrete uses and provide evidence that the observed

nonuniformity in how observed addresses are distributed across the IPv4

space can be put to good use in practice. In particular, these use cases argue

for more aggressive future efforts that are aimed at adequately accounting for

the full-fledged spatial-temporal characteristics of real-world traffic in guiding

telemetry systems to optimize their resource usage by examining less non-ToI

traffic. (§ VII)
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CHAPTER III

DATASETS

Previous work exploring the multifractal properties of network traffic

is decades old [11][4], and the volume and nature of real internet traffic has

undergone tectonic shifts since those experiments were run. Consequently, further

examinations of multifractal properties benefit tremendously from samples of the

“modern” internet. Furthermore, examining how these properties vary over time,

in the vein of [18] is valuable, particularly examining how the behavior evolves over

hours, days, months, and years. To this end, we assemble a collection of publicly

available datasets (CAIDA[1] and MAWILab[8]), alongside a number of privately

collected samples for university campus border switches.

3.1 Collected Traffic Traces

A variety of traffic samples were evaluated Table 1, spanning a number

of dates, times, and locations. For every dataset, only the first 100,000 observed

source IPs are considered, which was found to not substantially impact the results

while making head to head comparison of different datasets much easier.

In Table 1, CAIDA refers to the CAIDA 2019 anonymized internet trace,

which is recorded from an internet backbone [1], MAWI refers to the MAWILab

traffic anomaly archive [8], which is recorded at the border between the WIDE

project and its parent ISP. UCSB refers to captures of network traffic at the edge

of UC Santa Barbara’s campus network. UO refers to captures of network traffic at

the edge of the University of Oregon’s campus network. Data from both campuses

are anonymized with CryptoPAn [19] prior to analysis. This prefix-preserving

anonymization method exactly preserves the structure being analyzed such that

running the analysis before and after anonymization yields an identical result.
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These datasets represent network traffic from campus and network backbone

environments, which covers two very common network settings. Data spanning

seven years is included, and traces were captured on a variety of times of days,

days, and months. This all serves to forward the argument that what we observe is

not isolated to a specific time, place, or circumstance, but is rather a fundamental

property of organic internet traffic.
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Name Date Duration Type IP Count Packet Count
CAIDA-dir-A 2019-01-17 5:00AM 900s pcap 2,381,306 566M
CAIDA-dir-B 2019-01-17 5:00AM 900s pcap 3,863,987 1.23B

MAWI-20150202 2015-02-02 2:00PM 900s pcap 5,571,625 99M
MAWI-20150710 2015-07-10 2:00PM 900s pcap 4,415,599 191M
MAWI-20151002 2015-10-08 2:00PM 900s pcap 4,818,370 135M
MAWI-20180316 2018-03-16 2:00PM 900s pcap 4,567,614 69M
MAWI-20180807 2018-08-07 2:00PM 900s pcap 4,635,311 73M
MAWI-20181107 2018-11-07 2:00PM 900s pcap 4,677,191 80M
MAWI-20190901 2019-09-01 2:00PM 900s pcap 4,689,835 87M
MAWI-20210110 2021-01-10 2:00PM 900s pcap 265,794 52M
MAWI-20210614 2021-06-14 2:00PM 900s pcap 180,532 74M
MAWI-20211212 2021-12-12 2:00PM 900s pcap 149,572 55M
UCSB-20220428 2022-04-28 12:15 900s pcap 194,498 1.02B
UCSB-20220921 2022-09-21 19:25 900s pcap 112,164 1.05B
UCSB-20221205 2022-12-05 20:15 900s pcap 186,575 1.1B
UO-20181106 2018-11-16 00:00 1 day netflow 1,805,085 9B
UO-20190829 2019-08-29 00:00 1 day netflow 1,497,311 12B
UO-20200213 2020-02-13 00:00 1 day netflow 786,607 36B
UO-20211106 2021-11-06 00:00 1 day netflow 1,288,775 26B
UO-20220517 2022-05-17 00:00 1 day netflow 668,817 23B

Table 1. List of traffic samples
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CHAPTER IV

METHODOLOGY

Let µ denote the measure (defined on the IPv4 space) that counts the

number of observed IP addresses in a given dataset. Determining if this measure

shows multifractal properties is relatively straightforwards at a high level: compute

the fractal dimension at a variety of scaling factors, and see if it changes between

scaling factors. If if does change, then µ is multifractal, and if it doesn’t change, it

is monofractal; if µ has fractal dimension 1 (same as the underlying IPv4 space),

then it is nonfractal. This test is equivalent to computing the multifractal spectra

and ensuring that it is not degenerate.

4.1 Technique to Detect Multifractal Properties

In order to evaluate the multifractal characteristics of the set of observed

IP addresses in a given trace, we use the Method of Moments approach [18]

adapted for the discrete IP space, which consists of the following steps:

– Compute multiresolution quantities by building a table of how large every

subnet is for each prefix length (§ 4.1.1)

– Compute the structure functions using the multiresolution quantities table

(§ 4.1.2)

– Compute the partition function by determining the slope for each of the

structure functions(§ 4.1.3)

– Nonlinearity of the partition function indicates the presence of a multifractal

structure to the data (§ 4.1.4)

4.1.1 Multiresolution Quantities. For 1 ≤ λ ≤ 32, we partition

the input IP space into subnets with prefix length λ. We then count the number
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of observed addresses that fall in each subnet, and indicate this value with the

notation µ(i, λ), where i ∈ [0..2λ − 1] indicates the index of the subnet being

examined, and λ indicates the prefix length of that subnet. Note that the structure

of subnets mirrors the binary tree construction outlined in [15].

4.1.2 Structure Function. For a given “moment” q, Z(λ, q) =∑
i µ(i, λ)

q defines the structure function across all subnets with prefix length λ.We

modify the computation slightly such that if µ(i, λ) = 0, µ(i, λ)q = 0 for any

q (even if q ≤ 0, which would normally yield 1 or not be defined). Relaxing the

computation in this way is a necessary to facilitate translation from a continuous

space to a discrete space. An example structure function graph can be seen in

Figure 1. In effect, the structure function Z(λ, q) is an estimate of the q-th moment

of µ, and multifractality presumes that these moment estimates will exhibit some

scaling behavior for large λ. Further analysis of the behavior of the structure

function can be found in § 5.4.1.

Figure 1. UO-20220517 structure function
graph

4.1.3 Partition

Function. For a set of outputs

{Z(λ, q)|λ ∈ [s..e]} for a given

range of moments q and for a range of

prefix lengths s to e in the structure

function, let τ(q) represent the slope

of the linear regression of log2(Z(λ, q))

vs. log2(λ). For our evaluation, we set

our prefix range to work between the

8 and 24 prefixes (s = 8, e = 24). We compute τ(q) for q ∈ Z : −4 ≤ q ≤ 4. An

example partition function graph can be seen in Figure 2. Formally, if the structure
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functions serve as estimates of the q-th moments of Z(λ, q), then multifractality

presumes that E[µq] ≈ Z(λ, q) ≈ λτ(q) for large values of λ; that is, the partition

function attempts to capture the presumed scaling behavior. Further analysis of the

behavior of the partition function is provided in § 5.4.2.

Figure 2. UO-20220517 partition function
graph

4.1.4 Final Analysis.

Following the multifractal formalism

outlined by Riedi [15], the partition

function τ(q) would be input in to a

Legendre transform τ(q) = min(αq −

f(α)) to derive the multifractal

spectrum f(α). Thus, monofractal

data is expected for a linear input as

it results in a degenerate multifractal

spectrum. On the other hand, multifractal data results from a nonlinear input as

it produces an output with a nondegenerate (i.e. wide) support that indicates

a varying fractal dimension, which is the defining characteristic of multifractal

structures [16]. In order to observe this, we plot τ(q) against q and see if there is

a substantial nonlinearity. Note that τ(q) is largely noninformative for nonfractal

data, except for showing that the fractal dimension is identical to the Euclidean

dimension (i.e., the data fill or cover the entire space).
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CHAPTER V

RESULTS

In this chapter, we will first apply the method of moments methodology

to uniformly random data in order to get a “baseline” for what nonfractal data

looks like. We then apply the same methodology to a single dataset to demonstrate

what the results look like for multifractal data. With a fresh understanding of

how the analysis works per dataset, we examine aggregates of the results across

all datasets. Finally some time is devoted to discussing the practical considerations

of the method of moments as well as intuitive interpretations of the functions and

results.

A sample of results covering each data source can be seen in Figure 3. Each

row corresponds to a single dataset, and one dataset from each network source

was selected. The result of the structure function computation is visible in the left

column, and the corresponding partition function computation can be seen in the

right column. These are provided here primarily as a visual baseline to show the

general behavior common between all the datasets, and to give a rough idea of the

particular behavior of each data source. These graphs will be discussed in greater

detail later in the document.

5.1 An Example of Nonfractal Data

In order to make concrete what was described in § 4.1.4, we will spend a

moment examining data that does not posses any multifractal characteristics.

The formal definition of nonfractal that we use is that a set in [0, 1] is nonfractal

if its fractal dimension is equal to its dimension as a subset of [0, 1]. For the

linear IP space, the dimension is 1, so if the computed fractal dimension of a set

is 1, then we claim the set is nonfractal. In more intuitive terms, the points of a
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(a) CAIDA-dir-A

(b) MAWI-20190901

(c) UCSB-20220428

(d) UO-20220517

Figure 3. Structure and partition function graphs for selected datasets

nonfractal set fully fill or cover the space. Graphs of the structure function and

partition function for a set of 100K IP addresses that were generated by casting 32

bit integers drawn from a uniformly distributed random source as IP addresses
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Figure 4. Graph of the structure and partition function for 100K IP addresses
generated from uniformly random integers (i.e. nonmultifractal data). Note that
the partition function is computed between /0 and /16 instead of /8 and /24

can be seen in Figure 4. A set of values drawn from a uniform distribution by

definition are extremely unlikely to posses any multifractal structure. Though

this is not monofractal data, the intent is to provide an example of what data that

doesn’t show the properties we are discussing looks like for the purpose of building

intuition. In that capacity uniform random data suffices.

The structure function graphs start at l = 1, but in the l = 0 case, the

y value for each moment would be log2(n
q) where n is the number of input IPs,

which follows from the equation for the structure function, and the fact that we

only have one subnet at prefix length 0. This gives a predictable starting point for

each moment q in the structure function graph. Additionally, the y value at l = 32

will be log2(n) for every moment, as at l = 32, each subnet either has 0 or 1 IPs, so

the computation will simply return the number of IPs. We call the horizontal line

at y = log2(n) the convergence line, as the lines for every moment will eventually

converge to it. Note that the lines for each moment in this structure function plot

converge at roughly the same prefix length. As predicted, the partition function

for random data is almost perfectly linear, as the data does not posses a varying
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fractal dimension beyond what little incidental structure emerged from the random

number generator.

Figure 4 shows that the input data is uniformly random (i.e. nonfractal),

and τ(0) ≈ 1, as was predicted for nonfractal data. The partition function here

is computed between /0 and /16 rather than /8 and /24 like every other partition

function in this document as there is a very distinct nonlinearity in the structure

function around /16, and per § 4.1.3, the analysis is only valid over sections of

the structure function where every line is linear. Furthermore, there is no “human

interference” at small prefix lengths for the random data, so the motivation for

excluding the /0 to /8 range does not hold. Note that shifting the range like this is

not required for other traces as they are more or less linear between /8 and /24.

5.2 Multifractal Analysis of a Representative Sample

In Figure 5, we see the structure and partition functions for the first 100K

IPs of the MAWI 2021-01-10 trace, and the differences from the structure and

partition graphs for the random data are stark. Notice that the graph of the

structure function has a “knee” between l = 7 and l = 10 where all the lines for

negative moments rapidly approach 0, and the lines for the positive moments don’t

converge to the expected value of log2(100, 000) ≈ 16.61 until far later, with the

Figure 5. Graph of the structure and partition function for the first 100K IPs of
the MAWI-20210110 trace
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line for q = 4 not converging until l = 32. These observations are represented

more numerically in the partition function graph, where the negative moments all

have slopes near 1 (recall that this only considers l ∈ [8, 24], so the “knee” is not

examined), and the positive moments trend towards having more negative slopes.

The most critical characteristic is the pronounced nonlinearity between the segment

for q ∈ [−4..−1] and q ∈ [0..4], which is strongly indicative of a varying multifractal

dimension, and thus multifractal structure. The partition graph being split in this

manner is a common theme in all examined data.

5.3 Aggregate Analysis

As we are using nonlinearity in the partition function to judge the presence

of multifractal structure in the data, the simplest analytic approach is to ask “how

bent is it” for every trace we are examining. Prior works answered this question

by computing the R-Squared value for the partition function output, but we argue

that this approach, while more statistically rigorous, is overly general as the nature

of the nonlinearity is identical across all samples. Manual inspection of all the data

demonstrated that the bend consistently occurred at or adjacent to q = 0, so

comparing the slope of the graph for q ∈ [−4.. − 1] with the slope of the graph

for q ∈ [0..4], offers a general approach for evaluating nonlinearity. In order to

rigorously compare the pre and post bend slope, a linear regression is computed

for each region and plotted. Examining Figure 6, it is clear that the slopes of the

“flat part” from q = −4 to q = −1 are all very shallow, with the steepest slope

being −0.08, and most of the slopes clustering around −0.03. In contrast, the

shallowest slope in the “bent part” Figure 7 is −0.31. Our metric for “how bent

is it” then becomes the slope of the bent part divided by the slope of the flat part.

Nonmultifractal data should yield approximately 1 for this metric, as the slope for
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Figure 6. CDF of slopes of partition
function for q ∈ [−4,−1]

Figure 7. CDF of slopes of partition
function for q ∈ [0, 4]

Figure 8. CDF of ratio of slope of “bent part” over slope of “flat
part”
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q ∈ [−4.. − 1] and for q ∈ [0..4] are expected to be the same. Upon examining

the collected data, Figure 8 shows that none of the samples has a ratio anywhere

near 1, rather the smallest ratio is 6, and the ratios seem roughly evenly distributed

between 6 and 31, which indicates that all examined samples have a substantial

nonlinearity, which indicates strong multifractal scaling.

5.4 Examination of Method of Moments

Now that these operations have context in the form of results, we take a

moment to go back and build up intuition about why each function behaves as it

does.

5.4.1 Structure Function. This is a rough translation of the “box

counting” method [14] for determining multifractal spectra in continuous input

spaces to a discrete input space. Intuitively, one should think of the multiresolution

quantities as being similar to finding the mass distribution of the set of input IPs,

and the structure function computes a value that correlates with how clustered

the mass distribution of the input is. To illustrate the behavior of Z(λ, q) consider

some input set with enough IPs to fill one subnet with prefix length λ. Now

consider how different distributions of those addresses throughout the IP space

will impact the value of Z(λ, q). If q = 0, the function will return the number of

subnets that have one or more IPs in them. If q > 0, the function will assume its

maximum value when every IP is in the same single subnet, and its minimum value

when the addresses are distributed evenly across all subnets. Conversely, if q < 0,

the maximum value occurs when the addresses are spread evenly across all subnets,

and the minimum value is occurs when every address is in the same subnet. The

value of q changes the size of the subnets that get measured, in a basic sense.
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5.4.2 Partition Function. Selection of the limited prefix range for

the partition function is intended to cope with a critical restriction outlined in [7]:

When finding the slope for a moment, the line formed by the plotted points must

be straight, otherwise the slope found by least squares has no physical meaning.

The moment lines for the /8 to /24 prefix range are consistently sufficiently

linear that we are comfortable with accepting the result of the linear regression

as matching the real slope of the segment being examined. Furthermore, we justify

this choice by making the following claims: First, the distribution of subnets up

to /8 (and potentially deeper) is dominated by human influence (namely the

IANA), so taking measurements here is more akin to measuring the outcomes

of negotiations and deals during the early days of the internet rather than more

“organic” allocation patterns. Second, prefix lengths greater than 24 tend to run

into finite limit effects, as there is a hard scaling limit at /32, and as we approach

that limit the structure being analyzed often breaks down.

5.4.3 Interpretation of Moments. There is a dearth of

interpretations of what the moments q actually correspond to in the literature. [16]

describes q as a “variable [that] selects different resolutions, with higher values of q

selecting a local scaling...of lower order”. While nice and general, it is not obvious

how to take this description and interpret the shape of the structure and partition

graphs, so we lend the intuition we have developed. Intuitively, it is probably most

helpful to think about the structure function without the context of multifractals

as being a function capable of being “tuned” for certain types/sizes of clusters of

addresses by setting q. The structure function converges to the number of IPs in

the input set once the type of cluster it is tuned for has been broken up by the

22



increasing prefix length λ (i.e. the prefix length becomes long enough that most of

the IPs appear in different subnets).

The q = 0 case is a raw estimate of the box-counting dimension of the

set of observed IP addresses as a subset of the IPv4 space. This therefore gives

information on to what extent the data (IP addresses) is filling out its physical

support (the IP space). In measure-centric language, the set of input IPs can be

normalized to some subset of [0, 1] (as was done in [11]), and τ(0) would estimate

the fractal dimension of this set. As multifractals tend to not fill out their spaces

(versus something like a Hilbert Curve, which does), we would expect τ(0) < 1 for

multifractal data. The τ(0) values for each dataset can be seen in Table 2.

Negative moments (q < 0) tune the structure function to ignore subnets

with many IPs in them (e.g. for q = −2, two subnets each with 50 addresses

will contribute eight times the mass as one subnet with 100 addresses), which

interestingly makes their presence very apparent since there is a huge gap between

the lines for q < 0 and the convergence line. Among the sample data, it was

common for traffic to concentrate in a couple of /7 or /8 subnets, which contained

a large share of the addresses (Figure 9 and Figure 10. Both are generated using

the technique outlined in § 5.4.3.1). Structure functions with negative moments

would functionally erase these large subnets from the total until they had been

broken up sufficiently (i.e. λ = 10 or λ = 11), at which point the set of now smaller

subnets would start contributing meaningfully to the sum. Positive moments

(q > 0) conversely tune the structure function to “amplify” the presence of clusters

at large prefix lengths by weighting larger subnets much more heavily. For example,

for q = 2, a subnet with 100 IPs will have double the mass of two 50 IP subnets.

Notice that this ratio is much smaller than the q = −2 case described earlier, which
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likely contributes to the relatively rapid rate of change for the negative moments

compared to the positive ones.

Further analyzing the behavior of the positive moments, imagine a uniform

random distribution of n IP addresses: the expected number of IPs per subnet

with prefix length λ is n
2λ
. If set an arbitrary limit and say the line for a moment

is “pretty close” to converged once there are 2 IPs per subnet, then we would

expect the values for the positive moments to converge when the expected IPs per

subnet is 2. For n = 100000, this happens at λ ≈ 16, and if we further restrict our

definition of “pretty close” and say the expected value must be 0.5 IPs per subnet,

that happens at λ ≈ 18. Checking the structure function graph of random IPs

Figure 4 shows that this prediction aligns with the observed outcome. Contraposing

this, if the structure function for positive moments has not converged by the time

the expected number of IPs per subnet is small (< 1), that means that there

are clusters of IPs concentrated in certain subnets at long prefix lengths, and the

distribution of IPs is not uniformly random. In this sense, positive moments tune

the structure function to be sensitive to the presence of big clusters, and this effect

is particularly visible at long prefix lengths.

To connect this behavior back to multifractals, if we imagine a multifractal

as a sort of stacking of somewhat self-similar mono-fractals with different fractal

dimensions, the moment q selects which fractal dimension we want to be sensitive

to. Lower values of q look for larger fractal dimension, meaning it is sensitive to

structures at very large scales reappearing at very small scales. Conversely, higher

values of q look for lower fractal dimensions, meaning it is sensitive to structures at

a given scale reappearing at nearby scales.
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Figure 9. Heatmap showing the portion
of addresses in /8 subnets for the
CAIDA-dir-A trace

Figure 10. Heatmap showing the portion
of addresses in /8 subnets for the MAWI-
20210110 trace

5.4.3.1 Heatmaps. The heatmaps seen in Figure 9 and Figure 10 are

generated by dividing the input IP space into subnets with a given prefix length,

counting the number of IPs in each subnet, and then mapping the subnets to a

grid by taking the linear space of IPs and transforming it into a two dimensional

Hilbert Curve of order 8. Colors are then assigned via one of two schemes: In the

first scheme, subnets are assigned a color whose brightness linearly corresponds to

the number of IPs in that subnet. In the second scheme, a subnet is colored black if

there are any IPs at all in it, and white otherwise.

5.4.4 Influence of Sparsely Populated Subnets on Negative

Moments. Across the structure function graphs for every real world dataset, a

“knee” was observed somewhere between the /6 and /10 prefix, where the negative

moments abruptly shot up towards 0. This is caused by the properties of Z(λ, q)

when q < 0: As soon as one of the subnets being examined only has one IP,

Z(λ, q) > 1, which trivially follows the definition of Z. On the structure function

log plot, this effect manifests as the line crossing the x-axis. It is well known that

the distribution of network traffic by prefix is long tailed, so the distribution of
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active IPs by prefix likely has the same property, so it is reasonable to expect that

at relatively early prefix lengths there will be a subnets with only one IP. Recall

that due to the relaxation in the computation described in § 4.1.2, subnets with

no IPs are not considered in the computation. Checking Table 2, one can actually

match up the prefix length where each dataset has a subnet with one active IP with

the prefix length where the knee is in the dataset. Weaknesses in the mapping of

the box counting technique from continuous spaces to discrete spaces are likely to

blame for this behavior.

Some traces, like the CAIDA-dir-A trace show a sort of “stairstepping”

in the stucture function graph Figure 3 that isn’t a proper knee. Examining the

heatmap for CAIDA-dir-A Figure 9 shows how the effect described in § 5.4.3

for negative moments could cause this: when the overwhelming majority of the

addresses are concentrated in six /8 subnets, each time an increase in resolution

divides that set of addresses it has a profound impact, but occasionally the division

caused by a zoom in will have no impact if the IPs happen to coincide in the same

subnet. This gives rise to the stair-stepping effect, as some increases in prefix

resolution split the IPs, and others don’t.
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Dataset /6 /7 /8 τ(0)

CAIDA-dir-A 0 0 0 0.816

CAIDA-dir-B 5 11 30 0.499

MAWI-20150202 0 1 8 0.577

MAWI-20150710 0 0 7 0.580

MAWI-20151002 0 0 3 0.579

MAWI-20180316 0 2 7 0.583

MAWI-20180807 0 2 4 0.585

MAWI-20181107 0 1 1 0.585

MAWI-20190901 0 1 3 0.583

MAWI-20210110 0 0 2 0.538

MAWI-20210614 0 0 5 0.524

MAWI-20211212 0 0 1 0.514

UCSB-20220428 0 1 4 0.512

UCSB-20220921 0 0 1 0.503

UCSB-20221205 0 0 3 0.508

UO-20181106 0 1 1 0.552

UO-20190829 0 0 0 0.548

UO-20200213 0 0 0 0.544

UO-20211106 0 0 4 0.541

UO-20220517 0 2 11 0.530

Table 2. Number of subnets containing 1 IP address for a set
of prefix lengths, underlines indicate the shortest prefix length
where a subnet had a single active IP in it. τ(0) is included
to illustrate the relationship between scaling factor and IP
dispersion and provides an estimate of the fractal dimension of
the observed set of IPs.
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CHAPTER VI

PHYSICAL EXPLANATION

In this chapter, we dig in to the lower level statistical mechanics that

describe how the multifractal structures are generated locally. We then take

this analysis and postulate an mechanism by which real-world phenomena

could give rise to the observed statistical mechanics. Finally we translate the

observed mechanisms into a generative model that creates realistic multifractal

IP distributions, and spend some time analyzing its output.

6.1 Preliminary Findings

In order to peek at the statistical mechanics at work within the data, we

ran each set of input IPs through the level weight procedure outlined in § 6.1.2 for

prefix lengths of 8, 12, and 16; and generated a histogram, a selection of which

can be found in Figure 11, Figure 13, and Figure 12. This procedure examines

every subnet at the given prefix length, finds the probability that an IP in that

subnet has a 1 as the next bit after the current prefix, and plots a histogram of

those values. Note that these are recorded across the duration of the trace rather

than the first 100K IPs, so larger traces like CAIDA will be smoothed out relative

to the smaller traces. The /8 prefix is typically noisy due to a small number of

possible samples (256), but shows something that very clearly resembles a normal

curve or beta function, excluding the peaks at 0 and 1 which we choose to ignore

for reasons covered in § 6.2.2. This observation drove the development of our

generative cascade model.

6.1.1 Physical Interpretation. Following Kohler et al.[11], we

concur that the multifractal structure is likely due to organizations receiving

address allocations, partitioning them up, and redistributing the partitions to
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(a) /8 (b) /12 (c) /16

Figure 11. Level weights for CAIDA-dir-A

(a) /8 (b) /12 (c) /16

Figure 12. Level weights for UCSB-20220921

(a) /8 (b) /12 (c) /16

Figure 13. Level weights for MAWI-20210110
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customers, which aligns rather closely with the cascade model. We further propose

that there are “phases” to the allocation behavior as prefix length increases. The

first phase from /0 to /8 − /10 is dominated by IANA allocations[9][2] The second

phase from /8 to /15 or so is dominated primarily by internet service providers

and secondarily by “legacy organization” that got their /8 allocations back before

that was a substantial commitment and have been hanging on to them (the DOD

being a prime example of this). For ISPs, a quick examination of the address blocks

allocated to Comcast and Spectrum indicates that they split their allocations up

into large /9s-/15s that they then allocate internally on a geographic basis, often by

city. The third phase is the allocation of either single addresses or small blocks to

customers, and the final phase is the customer distributing their address(es) among

their local machines. Each of these phases has a tendency to create clusters: for the

first phase addresses are divided up geographically to different RIRs (though this

is pretty messy), which creates natural clusters along geographic borders. In the

second phase, service providers do another layer of geographical partitioning, which

creates clusters whose size and activity likely correlate to the population of the city

they are assigned to. In the third phase, more clusters are created as geographic

blocks are chopped up and handed out, and the fourth phase likely happens on

such a small scale that it would be challenging to classify anything as a substantial

cluster.

6.1.2 Level Weights. We use “level weights” to describe a list

of probabilities generated using the following technique (as seen in Figure 11,

Figure 13 and Figure 12):

– Initialize a list lw with no entries

– Divide the set of input IPs in to subnets with prefix length λ

30



– For each subnet, count how many of its member IPs have a 1 for bit λ+ 1

– Divide the above count by the total number of IPs in the set, and append this

portion to lw

These are graphed as a histogram where each bar corresponds to the portion of a

subnets child IPs that have a 1 for the next bit (i.e. the probability that an IP in

that subnet has a 1 as the next bit after the subnet prefix), and the height of the

bar is the relative occurrence of that probability.

6.2 Generative Cascade Model

In order to synthesize lists of IP addresses showing multifractal properties,

we use the following procedure:

Given a number n indicating how many IP addresses should be generated, a

number l indicating the current prefix length of the working pool of addresses, and

a prefix p indicating the current IP prefix, and beta distribution parameters a and

b:

– If p has all 32 bits filled out and n = 1, add it to the list of output addresses

and return. If n > 1, indicate that there was a duplicate.

– Sample the distribution β(a, b) to get a number x between 0 and 1.

– Generate a new prefix p0 by setting bit l of p to 0.

– Generate a new prefix p1 by setting bit l of p to 1.

– Recursively call this operation with p = p0, n = floor(x ∗ n), l = l + 1

– Recursively call this operation with p = p1, n = n− floor(x ∗ n), l = l + 1
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In plainer language, this procedure works by recursively partitioning a set

of size n in to two parts, where one part has β(a, b) portion of the input set, and

the other part has the rest. Members of the first set get 0’s the bit corresponding

to the current recursion depth, and the other set gets 1’s. By adjusting the a and

b parameters of the Beta Function, it is possible to adjust the distribution of IPs.

In the experimental data, a and b tended to be equal, however setting a and b to

be smaller tended to create more clustered sets of IPs, while setting them larger

created smoother and more evenly distributed sets of IPs.

6.2.1 Cascade Model Results. The level weights computed for

the cascade model 14 align quite well with those computed for the samples. The

structure functions for the synthetic data Figure 15, Figure 16, Figure 17 have the

key features found in the structure functions for the experimental data: the more

clustered it is, the later the positive moments converge and the earlier the negative

moments converge. There is one key problem: the knee is missing for Figure 15 and

Figure 16 (whose a and b parameters are most similar to the observed data). As

outlined in § 5.4.4, we believe that at short prefix lengths in real data, there is some

not-so-organic clustering as a consequence of how the IP space is allocated, and

absent this initial perturbation in the synthetic data, the knee evaporates away on

the less clustered data.

The partition functions for the synthetic data seen in Figure 18, Figure 19,

and Figure 20 also demonstrates the nonlinearity characteristic of multifractal

structure in the data, and furthermore the nonlinearity becomes more pronounced

as the beta function parameters are reduced. This aligns completely with the

expectations laid out above.
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(a) /8 (b) /12 (c) /16

Figure 14. Level weights for cascade model synthetic data. a = 2, b = 2

Figure 15. Structure
function for 100K synthetic
IPs (a=2, b=2)

Figure 16. Structure
function for 100K synthetic
IPs (a=3, b=3)

Figure 17. Structure
function for 100K synthetic
IPs (a=0.5, b=0.5)

Figure 18. Partition
function for 100K synthetic
IPs (a=2, b=2)

Figure 19. Partition
function for 100K synthetic
IPs (a=3, b=3)

Figure 20. Partition
function for 100K synthetic
IPs (a=0.5, b=0.5)
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6.2.2 Cascade Model Limitations. A key deficiency of the model is

that the beta function parameters do not vary with respect to bit depth, while in

empirical testing seen in Figure 21, Figure 22, and Figure 23, there appears to be a

trend towards higher coefficients at deeper bit depths. Implementing this as part of

the model would be trivial, however the observed trend is likely heavily influenced

by insufficient sample size at long prefix lengths. As the prefix length grows and the

number of IPs per subnet shrinks, the samples taken of the beta distribution (as

described in § 6.2.3) become quantized. When a subnet has four IPs, for example,

getting the portion of IPs with a 1 in the next bit is going to yield 0, 1
4
, 1
2
, 3
4
or

1, regardless of the underlying distribution. This effect becomes particularly

pronounced among subnets with one or two addresses, and at longer prefix lengths

0, 1
2
, and 1 occur with overwhelming frequency. This is likely to lead to increasingly

incorrect regression values as prefix length increases, so experimentation with much

larger datasets that can fill out subnets with enough IPs at much deeper prefix

lengths is likely needed to conclusively determine the beta coefficients at those

prefix lengths. Additionally, techniques to dequantize data by injecting noise in

to the samples may actually aid the regression system.

Figure 21. Regression of
beta function parameters
for MAWI-20210110 at
λ = 8

Figure 22. Regression of
beta function parameters
for MAWI-20210110 at
λ = 16

Figure 23. Regression of
beta function parameters
for MAWI-20210110 at
λ = 24
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6.2.3 Beta Regression. To generate Figure 21, Figure 22 and

Figure 23, we use the process for generating level weights to get a list of

probabilities that, in each subnet with prefix length λ, the (λ + 1)th bit of a child

IP from that subnet is 1. We treat these probabilities as samples from a beta

distribution, and use regression techniques to compute the a and b parameters

of the distribution. Due to properties of the level weights outlined in § 6.2.2, the

samples have strong probabilities of assuming values of 0 and 1 (and to a lesser

extent, simple fractions), but the peaks from these are placed almost optimally

to interfere with the beta regression system and they represent heavily distorted

samples, so during regression values of 0 and 1 are ignored.
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CHAPTER VII

USE CASES FOR MULTIFRACTAL ADDRESS STRUCTURE

In this chapter we will start by looking at a method by which the clustering

property of multifractal data can be taken advantage of to optimize resource

usage of dataplane telemetry systems via a filtering scheme. Next we will examine

some possibilities of using the multifractal spectrum as a “signature” for certain

phenomenon or using it as a sort of alarm to indicate something about the nature

of the network traffic changed. Finally we will look at the viability of deploying the

method of moments technique to a real dataplane telemetry system.

7.1 Clustered Prefix Tracking

Current efforts are finding success with using the “clusters-of-clusters”

property that comes with multifractal behavior to potentially reduce workloads

on IDS and network telemetry systems that depend on knowing things about the

source of the packets they examine [3]. Soldo et al. [17] describe a technique for

coming up with compact filter rules, though they do not explore how clustering

behavior benefits these filtering rules. Chen et al. [5] found that the overwhelming

majority of malicious traffic tended to be generated by addresses from a fixed

subset of the IP space, and similarly Collins et al. [6] found that malicious hosts

tended to cluster in the address space. A number of papers deal with iteratively

refining their queries over the IP space [12][13][10][20], which carries an implicit

assumption that the features they are refining towards tend to cluster in the

IP space. Our work justifies this assumption. With the knowledge that sources

generating traffic of interest tend to cluster, it becomes possible to handle those

clusters in aggregate rather than individually.
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Consider some task where a dataplane telemetry system is running a query

to detect and monitor some set of addresses that are interesting (i.e. they are

generating ToI). The naive approach is to monitor all traffic and test to see if

every address is interesting. This is simple to implement and works well if the

telemetry system has enough memory to handle the entire space of traffic, but

it quickly falls apart if the traffic exceeds the resources of the telemetry system.

More sophisticated approaches may do some kind of time domain multiplexing,

where they cycle through monitoring subsets of the traffic such that the subset

fits on the telemetry hardware. This incurs penalties to accruacy as each address

will only be monitored for some portion of the time, and sophisticated statistical

devices are likely required on the backend in order to make the partial data usable.

An even more sophisticated model may do time domain multiplexing, but also

individually track addresses that were found to be interesting, so it doesn’t suffer

from the loss of observation time. Unfortunately, this requires a filter per address

to capture interesting traffic, and these are typically implemented as extremely

expensive TCAM in dataplane hardware, so this approach fails to scale beyond the

availability of TCAM rows.

Multifractal properties to the rescue! Since we know that ToI generating

(i.e. interesting) addresses tend to cluster, what if it was possible to just identify

the prefixes with only interesting addresses and track those? Luckily a procedure

capable of doing this is quite straightforwards assuming the input has a query that

is able to flag addresses as “interesting” or “uninsteresting” at runtime:

– Given a subnet with prefix length l, divide the prefix in to 2i smaller subnets

with prefix length l + i
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– Initialize an empty list e that will contain the subnets with only interesting

addresses

– See if each smaller subnet s contains interesting addresses

– If l + i is 32, see if the address in s is interersting, and if it is add it to e and

continue to the next smaller subnet

– If s consists of only interesting addresses, add s to e

– If s consists of a mix of interesting and uninteresting addresses, recursively

run these instructions on s, and concatenate each resulting list to e

– Otherwise, if s contains only uninteresting addresses ignore it

– Once every smaller subnet is processed, return e

If i = 1, this will compute the shortest possible list of prefixes that captures all

interesting addresses and nothing else. These prefixes would be the optimal set

of things to monitor in order to only see attack traffic while using the minimum

number of prefix filters. If i > 1, this will compute the shortest possible list of

prefixes where prefix lengths are multiples of i that capture all interesting addresses

and nothing else. In this sense i works as a knob that trades an increased number

of prefix filters for fewer recursive iterations. Additionally, if monitoring some

uninteresting traffic is permissible, limits can be placed on the recursion depth

which will reduce the maximum number of filters needed. In a real deployment, this

implementation would likely take the form of dataplane telemetry hardware that

is running two tasks concurrently. The first task is to run the query in question

on every prefix that has been flagged as containing only interesting addresses

continuously. The second task is to periodically run the recursive process, starting
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with 0.0.0.0/0 (multiplexing subnets over time if memory is constrained), and

adding the resulting list of prefixes to the set of prefixes with only interesting

addresses. In the event that a prefix containing only interesting sources suddenly

gains an uninteresting source, that prefix can be “evicted”, and have the recursive

refinement process run on it in order to reestablish a list of finer grained prefixes

that only contain interesting traffic.

This approach makes a very firm guarantee: if the system has enough

memory to track all the sources generating ToI for a given query, plus some

constrained overhead for the recursive scanning process, it will be capable of

satisfying the query regardless of how much uninteresting traffic there is as long as

it doesn’t run out of room for filters. Additionally, given the clustering properties

of multifractal ToI, the number of prefixes that need to be tracked (and thus filters

needed) will be minimal compared to the number of addresses being tracked, so

for many types of ToI, this approach is completely viable on hardware systems

available today, and there is a tunable parameter that can be used to trade off

the number of filters needed and the amount of uninteresting traffic that ends up

being mistakenly tracked, which makes this approach viable for a wide range of

capabilities.

7.2 Spectral Signature

Kohler et al.[11] describe measuring the multifractal spectra of a laboratory

network before and during a pair of worm attacks in the summer of 2001, and

demonstrate that spectra varied significantly both when the worm was introduced,

and when a revised version of the worm changed the spreading behavior from

targeting random IPs to attempting to spread by stochastically selecting IPs from

similar prefixes. This indicates that there may be some value in actually tracking
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the multifractal spectra of addresses on a network in real time: it provides a decent

set of aggregates that appear mostly time-invariant[18] on any scale between

seconds and days, but it is sensitive to changes in the structure of the traffic it is

built from. A rapid shift in the spectra or deviation from historical norms may

actually serve as a decent alarm bell indicating that something fundamental about

who is using the network changed, for example maybe there is a DDoS attack

or a worm, or maybe a misconfigured router is dumping packets on the network

that don’t belong there. It is doubtful that the multifractal spectra is useful in

its own right, but it correlates with something that every network operator cares

deeply about: who is on the network? Further work in this direction might yield

“spectral signatures” of different types of events, or even something as specific

as a certain botnet. This idea is executed on by Barlow et al.[4], where they

compute multifractal spectra of the internet background radiation, which could

be construed as the signature of the background radiation, but much work remains

in characterizing signatures and seeing if they are even distinct enough to draw

meaning from, and further taxonomizing the signatures for different types of traffic

(HTTP, UDP, etc.) to see if there is significance there. While our work does not

actually compute the spectra, the partition function can be converted in to a

multifractal spectra using the Legendre transform.

7.3 Implementation and Viability of Deployment to Dataplane

We implement the method of moments technique as Rust program that

computes the multiresolution quantities and structure function which emits the

structure function values for a python program to run a linear regression on. The

entire computation takes under a second for 10M IPs on a relatively old Intel Xeon

E5-2650v4 while using a single thread, and the complexity is linear with respect to
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the number of input IPs. The implementation can be trivially multithreaded using

a thread safe hashmap as the backing structure. IP addresses are extracted from

netflow and PCAP data using a pair of custom parsers written in Rust.

The dataplane side of the computation just requires collecting a list of all

source or destination IP addresses (depending on the analysis), which is one of the

simplest possible operations to run on modern dataplanes. Examination of Table 1

shows that even relatively large and long datasets do not accumulate more than

10M IP addresses, and in the common windowed telemetry system, the number of

IPs is very manageable.

As computation of the structure and partition functions in software is

relatively quick, averaging 10ms of computation time on the mentioned CPU for

100K IPs, the door to actually running the structure and partition function as

part of a realtime dataplane telemetry system is wide open. Additionally, the

multiresolution quantities and structure function steps are extremely amenable

to being run on a stream processor as generating the base multiresolution quantity

from a list of addresses is a single reduce, and each subsequent multiresolution

quantity is a map and reduce on a dataset half as large. Computing Z(λ′, q) is a

single map and sum per moment. The linear regression is a simple operation on a

fixed set of values numbering less than 1000. We believe that these requirements

are extremely modest for modern dataplane telemetry deployments, and the

benefits outlined in § 7.1 absolutely justify the processing cost.
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CHAPTER VIII

DISCUSSION AND OUTLOOK

In this chapter we will first discuss some of the limitations of the method of

moments, particularly as the input dataset grows to be large. Then we will outline

an initial approach for generalizing our cascade model to work in both the address

space and time dimensions, as well as discuss future work in characterizing the

physical phenomenon that creates the observed multifractal structure.

8.1 Limitations

As the method of moments operates over a discrete space, there is a hard

limit to how small the structures that can be examined are (i.e. the minimum

structure size is 1 IP). Consequently, as the number of input IPs grows very large,

there is a sort of “saturation”, where the input space fills up with enough addresses

that it is no longer possible to tell where one cluster ends and another begins.

We control for saturation by only considering the first 100K IPs in each dataset,

which was selected because (i) it was a round number, (ii) it was the largest round

number every dataset would be able to provide for, and (iii) it was found that the

structure and partition graphs at 100K IPs for each dataset were qualitatively very

similar to those for every IP in the same dataset. This is a nonissue in continuous

domains as it is possible to increase resolution endlessly, but in the discrete space

we operate in, the size of the input actually has an impact on the result, even if the

underlying structure is identical. We used the cascade model to generate 1M, and

10M, and 42M IPs (selecting 42M as it is ≈ 1% of the IPv4 space), all with beta

parameters a = 2 and b = 2. The structure functions can be seen in Figure 24,

and the partition functions in Figure 25. The computed structure and partition

functions for the 1M sample are similar to the 100K sample seen in Figure 15, but
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those are very different from the 10M and 42M sample both of which show clear

perturbances in their structure function and decay of multifractal properties in

the progressively more linear partition function. We postulate that the number of

inputs that causes “saturation” is highly dependent on the fractal dimension of the

data, but leave exploring these properties as future work.

8.2 Discussion

The work laid out here is limited in that we only set out to examine

multifractal properties in the spatial dimension, but there is a large existing body

of work establishing that internet traffic shows self similarity in the temporal axis

as well. Future efforts will likely need to unify these understandings, particularly

if they intend to build a full-fledged synthetic dataset generator, rather than

something that just generates sets of IP addresses. One simple approach for this

could likely consist of generating a set of addresses using our earlier described

approach, allocating packet counts to each source in an independent and identically

distributed (iid) manner (using some heavy-tailed distribution), and then using

some scheme (e.g., on/off behavior) to distribute each addresses’ allocation of

packets over time. A more elaborate but also more realistic approach would be

to generate a genuine spatial-temporal traffic dynamics by avoiding the above iid

assumption and replacing it by a packet allocation process that is derived from

(a) 1M IPs (b) 10M IPs (c) 42M IPs

Figure 24. Structure functions for cascade model data with a = 2 and b = 2 for
different numbers of IPs
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(a) 1M IPs (b) 10M IPs (c) 42M IPs

Figure 25. Partition functions for cascade model data with a = 2 and b = 2 for
different numbers of IPs

the same kind of multifractal analysis that is described in this thesis but where

the measure µ counts the number of encountered packets per observed IP address

rather than the number of observed IP addresses. Similar to the first approach, this

approach also requires a scheme to distribute each IP’s allocation of packets over

time, but the allocated packet counts in this case are now tightly correlated with

the multifractal scaling behavior that we would expect to observe for the measure

that counts the number of observed packets per observed IP and that could also be

synthetically generated by means of an appropriately defined cascade construction.

Characterizing the physical explanation for the driving force behind the

cluster behavior is an open problem. We pitched one possible interpretation

here § 6.1.1, but all the hard labor of digging up statistics on who owns what

allocations, where they have been allocated, and how many hosts are using these

allocations is left as future work. In general, we believe that the multifractal

construction of the internet is caused by features and practices inherent to subnets

themselves, as entities are provided some allocation of address space, which they

then allocate portions of to sub-entities or clients. This is handled recursively until

all addresses are distributed. As all entities that assigned addresses are not equally

“active”, this gives rise to a clustering behavior. The geographic interpretation

discussed in § 6.1.1 is just one dimension that the clustering can manifest in, but
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many others are possible and likely (e.g. a cloud provider may have a single subnet

assigned to“popular” servers, so these servers would be clustered in this subnet).

Furthermore, there is a nuanced discussion to be had about how the

multifractal effects are observed in samples of internet traffic, but since there isn’t

a big trace of all the traffic on the internet to look at, what we characterized here

may not actually be a property of the internet itself but rather a behavior that rises

out of how clients of the network environments that we analyzed contact the rest

of the world. This opens a dizzying number of questions about how different usage

patterns and user bases shape the fractal structure, and we leave answering these as

future work.
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CHAPTER IX

CONCLUSION

In this thesis we collected a repository of traffic of interest from a range

of real-world environments and measured the multifractal properties of each

dataset using the method of moments technique. We ran a bulk evaluation that

found that every dataset was consistent with exhibiting multifractal scaling

behavior that manifests in a pronounced cluster-within-cluster property. We then

offered a possible explanation for how this clustering property may emerge, and

demonstrated a parametric cascade model IP address generator that was able to

generate sets of addresses that matched the multifractal scaling properties of the

datasets. Finally we proposed several concrete use cases for multifractal properties

and discuss the viability of computing it in a live network setting.
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